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Changes in salinity of these source and sink waters have been linked to changes in sea ice formation as well

as to ice shelf melt (Haumann et al., 2016; Jones et al., 2015) and are likely associated with changes in the

basic freshwater fractionation mechanism associated with sea ice formation near Antarctica and export of

that sea ice northward to where it melts, which salinifies the coastal waters and freshens the surface waters of

the Antarctic Circumpolar Current (Abernathey et al., 2016). This freshening affects the properties of SAMW

when these surface waters are driven northward across the Subantarctic Front by wind (Cerovečki & Mazloff,

2016). Sarmiento et al. (2004) showed that nutrients in the upwelled deep waters that enter the SAMW have

significant global impacts on nutrient availability in the upper ocean.

The seasonally ice-covered region of the Southern Ocean is relatively inaccessible to ships during winter.

Through growing deployments of autonomous Argo-type profiling floats, many of which now carry biogeo-

chemical sensors (Johnson & Claustre, 2016), these observational gaps are being filled in. However, almost all

Argo-type floats are tracked only through satellite positioning at the sea surface. Argo-type floats have a seri-

ous vulnerability when operating in the polar oceans: sea ice is very destructive to instruments at and near

the surface. To protect floats from sea ice, a temperature-controlled ice avoidance algorithm has been imple-

mented inArgofloat buoyancy control software since 2001 (Klatt et al., 2007). This algorithm instructs the float

to initiate a descent if the upper ocean temperature is below a threshold that implies the strong probability

of sea ice. Float profiles collected under ice are saved in memory for later ice-free transmission without the

satellite-derived position fixes of open water Argo profiles. In the Southern Ocean (south of 55∘ S), there are

11,856 temperature-salinity profiles with position flags indicating interpolation due to lack of position infor-

mation, from 231 Argo floats since 21 July 2006 (Figures 1 and 2). Most interpolated locations are due to sea

ice cover. These data represent 16% of the Southern Ocean Argo data set.

The question we address in this paper is the extent to which analysis and use of these under-ice profiles are

compromised because their positions are interpolated. The most common approach to dealing with miss-

ing Argo position information is to linearly interpolate latitude-longitude between known positions (Wong &

Riser, 2011), although interpolation along contours of planetary-geostrophic potential vorticity (PV) has been

proposed as an improvement (Reeve et al., 2015). Linear interpolation is apparent in Figure 1 where the nor-

mally curved float trajectories are instead a series of straight lines within the sea ice zone. Clearly, floats do

not follow these straight paths, which means, among other things, that their total track length and speed

are underestimated (Wong & Riser, 2011). The error and impact of assigning under-ice locations to float pro-

files that can be tens to hundreds of kilometers from their true position is studied here for the first time; the

resultingpositionerrors introduceuncertainties in theattributionof temperature and salinityprofilemeasure-

ments to a given position. We refer to these temperature and salinity profile uncertainties as representation

errors, which are necessary to characterize float data mapped onto Eulerian coordinates—for instance when

assimilated into state estimates (e.g., Mazloff et al., 2010; Nguyen et al., 2017) or used for gridded estimates

of transport (e.g., Gray & Riser, 2014). In addition, the lack of position information is not only a concern when

using float data in the Eulerian reference frame. In the Lagrangian perspective, interpretations of changes

in properties of water parcels often utilize surface observations or products such as air-sea fluxes, surface

temperature, ice cover, surfaceheight, andocean color (D’Ortenzio et al., 2014;Wong&Riser, 2011). Theuncer-

tainty in the surface boundary conditions that is introduced by uncertainty in under-ice Argo float position is

quantified here.

Some Argo floats are tracked acoustically in the sea-ice zone, between their 10-day satellite position fixes

when they profile; such acoustic (or RAFOS) tracking (Rossby et al., 1986) has had widespread success in

ice-free areas. Moored acoustic sources have been deployed by the Alfred Wegener Institut (Fahrbach et al.,

2011; Klatt et al., 2007) in the Weddell Sea. RAFOS-enabled floats work with a network of sound sources that

broadcast sound pulses at specified intervals, permitting tracking if enough sources are within range. Full

insonification and acoustic tracking of all autonomous under-ice instruments in the Southern Ocean would

be ideal; expense and logistics have made this goal presently impractical. A complication here is that the

Sound Fixing and Ranging channel is less efficient at conducting sound travel in the Weddell Sea compared

with midlatitudes: this reduces the range of acoustic transmission of polar compared to midlatitude sound

sources and therefore requires a higher density of sources (Klatt et al., 2007). Acoustic float tracks are helpful

for determining the uncertainty of linearly interpolated track approximations, and the uncertainty in linear

approximations is essential in evaluating the scientific effectiveness of acoustic tracking versus interpolation.
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Figure 1. All interpolated Argo float positions in the Southern Ocean. (yellow and blue dots) Interpolated Argo positions

with position loss <200 days (yellow) and >200 days (blue). (gold stars) Weddell Sea sound sources (Klatt et al., 2007).

(green curves) Average 1,000-m streamlines from Argo data (Gray & Riser, 2014). Black-dashed lines enclose our Weddell

Sea study area. Mean September ice edge (red) and mean February ice edge (magenta) from National Snow and Ice

Data Center (Fetterer et al., 2016), averaged from 1978 to present.

We present a method to estimate representation error associated with position interpolation of any

Lagrangianmeasurement over any time interval and in anygeographic region.We split theproblemof finding

representation error as a function of duration of position loss (section 4.2.1) into the problem of finding posi-

tion uncertainty as a function of duration of position loss (section 3) and spatial correlations of observed fields

(section 4), focusing on temperature and salinity, and peripherally on uncertainty in air-sea fluxes ascribed to

the uncertain profile locations.

In section 3, we estimate the position uncertainty of latitude-longitude and PV coordinate interpolation as a

function of duration of position loss by performing a series of data withholding experiments on three distinct

data sets: daily RAFOS-enabled float track data, 10-day satellite-tracked float data (non-ice periods only), and

model output generated from a particle release simulation (Wang et al., 2014) with a 0.16∘ Southern Ocean

State Estimate (SOSE; Mazloff et al., 2010). We interpolate in both latitude-longitude and PV geometries. The

results of the data withholding experiment are used to estimate position uncertainty as a function of time

since the most recent position observation for periods of up to 8 months.

In section 4.1.1, we estimate representation error as a function of distance uncertainty by using Ninove

et al.’s (2016) approach to compute temperature and salinity correlation within a binned spatial grid in both

latitude-longitude and PV coordinates—this gives us correlation as a function of distance. We then use dis-

tance as a linear predictor of uncertainty and compute uncertainty in temperature and salinity as a function

of distance uncertainty. In section 4.1.2, we reverse this viewpoint and consider the uncertainty in surface

fluxes associated with positions of a float lost beneath the ice. We calculate correlation length scales of SOSE

heat flux, salinity flux, and buoyancy flux and use these correlations to predict uncertainty in these fluxes as
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Figure 2. Histogram of total interpolated position time for all Antarctic Argo

floats (blue bars, based on all yellow and blue dots in Figure 1) and all

Weddell Sea Argo floats (red bars, based on study area in Figure 1).

a function of distance. Finally, in section 4.2.3, we combine these statis-

tics and estimate temperature, salinity, and air-sea flux uncertainty at the

interpolated position as a function of position loss time.

To recapitulate, position uncertainty is calculated as a function of posi-

tion loss time, representation error (mapping uncertainty) is calculated as

a function of position uncertainty, and total uncertainty is calculated by

combining the two.

2. Float Data and Model Output

The Weddell Sea supports a wind-driven cyclonic gyre; the northern side

of the gyre is the southern boundary of the Antarctic Circumpolar Current.

For this study, we define the Weddell Gyre as the ocean south of 60∘ S

and between 60∘ W and 20∘ E (black-dashed area in Figure 1). The south-

west quadrant of the Weddell Gyre is shallower and generally ice covered

year round. Sea ice covers the entire Weddell Gyre during austral winter

(Figure 1).

The Weddell Sea was chosen for this study because it has a high

density of standard satellite-tracked Argo floats compared with other

Southern Ocean regions and because of its unique record of under-ice,

continuously-tracked, RAFOS-enabled Argo floats deployed throughU.S. Argo and AWI (Klatt et al., 2007). The

Weddell Sea also has the longest under-ice float records (51 floats since 21 July 2006) of any Southern Ocean

region irrespective of insonification.

Depending on their location in theWeddell Gyre, all of which experiences seasonal ice cover, some floatsmay

be forced to operate below ice—without surfacing—for 10 months or more. Figure 2 shows the distribution

of periods of position loss for floats circulating in theWeddell Gyre.We observe twomajormodes of the under

icedistribution—transient position loss events lasting50days or less and seasonal position loss events lasting

between 200 and 300 days. The former represent floats that experience sea ice and then are advected either

to an ice-free region or, more likely, out of the gyre entirely. The latter are floats that are caught in the cyclonic

Weddell Gyre circulation and experience entire seasons of sea ice cover: these are the floats of primary interest

in the uncertainty analysis of this paper.

2.1. Satellite-Tracked Argo Floats

Argo floats typically profile from a maximum depth of 2,000 m to the surface every 10 days, although oper-

ational or experimental considerations can change this schedule. While at the surface, satellite positioning

information is recordedwhen possible. All Argo data prior to 17 July 2018, in our specified region, were down-

loaded from the USGODAE Argo GDAC Data Browser (SEANOE, 2000; regional map of satellite-tracked floats;

Figure 3a). An example of these data, fromArgo float 5901717, has beenplotted in Figure 4,with the under-ice

profiles lightened. In general, there are far fewer observations in the southwestern Weddell Gyre, most likely

due to a deliberate deployment choice to avoid “losing” floats under multiyear ice (Figure 3).

The Argo user’s manual (Carval et al., 2015) lists nine different possible metadata flags for position qual-

ity control, although only three are commonly used: flag “1” for good positions, flag “4” for bad positions,

and flag “8” for interpolated positions. Argo metadata and flags do not currently include the position inter-

polation method. Linear interpolation in spatial coordinates is the only method currently used, although

adding variants of position reconstruction is under discussion (M. Scanderbeg, personal communication,

March 12, 2017).

Only Argo locations with position flag 1 or 8 and Argo temperature and salinity profiles with position flag of 1

were retained for the calculations presented. Of the float data considered, 91 floats were tracked from 10 June

2002 to the present with ARGOS satellites, and 73 floats were tracked with GPS satellites from 12 November

2007 to present. The GPS constellation tracking is more accurate than ARGOS tracking, with stated location

uncertainties of better than 7.8 m. The ARGOS constellation uses the Doppler shift of received transmissions

to estimate position and is sensitive to the number of received transmissions, and the configuration of the

constellation at the time the messages were received. ARGOS positioning has four levels of accuracy ranging

from better than 250-m radius to over 1,500-m radius. For ARGOS satellite-derived positions, 19.4% of posi-
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Figure 3. (a) Satellite-tracked Argo float positions (blue dots) in the Weddell Sea with bathymetry (gray shading). Float

5901717 used in Figures 4 and 13 is highlighted in orange. (b) AWI sound sources (gold stars), acoustically tracked

positions of RAFOS-enabled Argo floats (red dots), satellite-tracked positions of RAFOS-enabled floats (blue dots),

Kalman smoother interpolation (cyan dots), and 950-m mean eddy kinetic energy from SOSE (shading). See Table 1 for

list of RAFOS-enabled Argo floats. (c) Two hundred forty SOSE particle tracks of particle release experiment (1,000

particles total) in the Weddell Sea. SOSE = Southern Ocean State Estimate.

tions were deemed better than 1,500-m radius, 43.2% were deemed better than 500-m radius, and 37.4% were

deemed better than 250-m radius. Only three positions were deemed greater than 1,500-m radius and were

rejected from the data set.

Argo floats that use the ARGOS constellation for positioning and data transmission may spend up to 12 hr

at the ocean surface, whereas GPS-tracked floats, which use Iridium satellites for data transmission, typically

spend less than an hour. During this period of transmission, Argo floats are essentially undrogued drifters,

affected by surface winds and currents. After transmission, floats conduct their profiling mission and are

advected by the shear in the ocean velocity field both on descent and ascent. Although techniques have been

developed to correct for these dynamical errors (Gille & Romero, 2003), we have not applied them here.

2.2. RAFOS-Enabled Argo Floats

Quantifying position error for under-ice Argo floats, which have linearly interpolated positions between satel-

lite fixes, is greatly facilitated in the Weddell Gyre because of the installed long-term acoustic float tracking

system and deployment of RAFOS-enabled (Rossby et al., 1986) Argo floats between 26 February 2008 and 4

February 2013. A subset of 22 of these floats was processed and tracked for this study (Table 1; Boebel, 2009;
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Figure 4. (a) WMO ID Float 5901717 float track (blue dots showing 10-day satellite-tracked positions) in the Weddell Sea. Straight segments (green) are periods of

Argo linear interpolation due to position loss in the presence of sea ice. Acoustic tracking has been produced for this float (red; Figure 3b). (b) Potential

temperature for WMO ID float 5901717 with superimposed potential density �� (brown curves). (c) Salinity for WMO ID float 5901717 with superimposed

potential density �� (brown curves). Numbers and lightened regions in (b) and (c) are periods of position loss due to the presence of sea ice.

Fahrbach & de Baar, 2010). These data spanned 1,806 days and 29,183 positionmeasurements (Figure 3b) and

were restricted to the Weddell Gyre.

The 22 RAFOS-enabled Argo floats used here are identical to standard (only satellite tracked) Argo floats, in

that every 7–10 days, they collect temperature and salinity profiles and then attempt to surface, transmit

their data, and receive a satellite fix. The only difference is that they additionally listen for RAFOS signals while

drifting at depth. All Argo float profiles, including RAFOS-enabled float profiles, have been entered into the

Argo database as part of the normal Argo data stream. According to Argo database standard practice, under

ice profile locations are assigned positions using linear interpolation. (Note that although these 22 floats had

Table 1

RAFOS-Enabled Argo Profiling Floats Tracked in theWeddell Sea Deployed From 26 February 2008 to 4

February 2013

WMO identifiers for RAFOS-enabled Argo floats

5901716 5901717 5901718 5901720 5901721 5901723 5901724

5901728 5901730 5901731 5901733 5901734 5901735 5901736

5901737 5901738 5901739 5901740 5901741 5901742 5901743

5901744

Note. Argo data graphics are available at http://www.ifremer.fr/co-argoFloats/.
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RAFOS receivers, their Argo database locations are based on satellite positioning and linear interpolation

since RAFOS positions were not available; Argo data management does not include RAFOS-tracked positions

at this time.)

A network of moored sound sources (Boebel, 2009; Fahrbach & de Baar, 2010) in the Weddell Gyre has been

maintained since 1999 by the Alfred Wegener Institute (Klatt et al., 2007; gold stars in Figures 1, 3, 4, and

13). Sound sources broadcast at carefully coordinated daily intervals to avoid interfering with one another.

RAFOS-enabledArgofloats listen for acoustic pings and record the timeof arrival (TOA) of the soundpulses. By

subtracting the known sound source clock time from the TOA, we calculate the time of sound travel. Dividing

time of sound travel by the sound speed then gives a range from the float to the sound source. The sound

speed is determined fromArgo temperature and salinitymeasurements,whichprovide anapproximateocean

density structure between the float and sound source (McDougall & Barker, 2011). The average sound speed

in the upper 1,000 m of the Weddell Gyre was calculated using all Argo temperature and salinity profiles,

yielding 1,441.9 m/s. We used this average sound speed for our positioning calculations to account for the

complex paths that sound pulses take in the ice-coveredWeddell Sea. Float and sound source clock times are

subject to errors and offsets, and because of the rapid propagation of sound in the ocean, small timing errors

can cause large changes in float track solutions.

The location of a float, which includes positioning error, can be determined if three or more distinct ranges

are known. The ARTOA II software package (Wooding et al., 2005) is the most commonly used approach for

constructing float track solutions from acoustic data. Typically, the ARTOA II software uses a least squares

approach to solve for float position although other schemes are available. Like standard Argo floats, the

RAFOS-enabled Argo floats attempt to surface every 10 days and record satellite-derived positionswhen con-

ditions allow. ARTOA II does not use satellite positioning to constrain float tracks; instead, it informs the user of

potential tracking biases by overlaying satellite positioning information onto acoustically derived float tracks

and TOA scatter plots.

Unfortunately, tracking floats in the polar oceans is not as simple as in midlatitudes. In midlatitudes, large

sound source transmission range (>1,000 km) is achieved through the efficient sound conduction of a broad

and deep Sound Fixing and Ranging channel; in the Weddell Gyre, the Sound Fixing and Ranging channel

is relatively shallow and narrow. When sound is conducted close to the surface, unknown interactions and

reflections with sea ice occur. This causes transmission ranges in the Weddell Gyre to vary from 700 km to

as little as 300 km (Klatt et al., 2007). The acoustic tracking data for the 22 floats that we processed from this

region frequently had less than three ranges. In addition to this issue, both measurements and sound speed

have uncertainties, most notably the slow drift of sound source clocks and float clocks. As will be described in

a subsequent publication, the least squares solution commonly used by ARTOA II is susceptible to becoming

unstable if float and sound source clock drift has not been precisely accounted for in preprocessing or if only

sparse range data is available.

Broader processing challenges can occurwhen dealingwith the specifics of this formulation of acoustic track-

ing: what quantitatively defensible adjustments to the clock offsets should be made when acoustic ranging

differs significantly from satellite positioning? If two acoustic ranges differ significantly, which one should be

trusted? Can information learned about the clock drift of one source be propagated to the rest of the float

tracking network? Can we estimate float location if we have just one or two acoustic range estimates instead

of the three required in a least squares solution?

Motivated by these questions and to overcome the greater challenges of intermittent and noisy range data in

the ice-covered regions,wedevelopedaKalman smoother approach (Rauchet al., 1965) toprocess theseWed-

dell Gyre RAFOS-enabled floats, which combines intermittent satellite positioning, noisy acoustic TOA, and

dynamical information to reconstruct float tracks. The Kalman filter is a minimummean square error estima-

tor that is commonly used to combine intermittent and disparate sensor observations. In the computationally

efficient formulation of the Kalman smoother that we have developed, the state variables and covariances are

saved on the forward pass and applied during the backward pass to compute improved state estimates.

Our Kalman smoother method has been designed to solve the entire float system simultaneously—it treats

all float positions, float velocities, sound source clock offsets, and sound source clock offset drifts as state

variables. The Kalman smoother takes as input all GPS locations and acoustic ranging data. A priori estimates
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of state variables are based on crude predictive models

xt+1 = xt + vtΔt, offsett+1 = offsett + drifttΔt (1)

where x is the float position, v is the float velocity, offset is the sound source clock offset, and drift is

the sound source clock offset drift. In this formulation, every time a float receives a satellite position

on the same day as it acquires acoustic ranging data, the smoother calibrates the sound source clock

offset and recalculates the offset drift. Our Kalman smoother approach has been validated using many

ARTOA II processed acoustically tracked float trajectories from the Diapycnal and Isopycnal Mixing Exper-

iment in the Southern Ocean experiment, which benefited from both lack of sea ice and sufficient sound

sources to allow accurate tracking (LaCasce et al., 2014). For our calculations, we used a 0.05∘ uncer-

tainty in satellite-derived positions, 10-s uncertainty in acoustic ranging, 3 × 10−3 for process noise in

position (units of degrees2), velocity (units of degrees2 /day2), and sound source clock offset (units of

seconds2), and 1 ×10−4 s2/day2 in process noise of sound source clock offset drift. The 22 Weddell Gyre

RAFOS-enabled floats had satellite positions for 1,155 days on a 10-day sampling interval, acoustically derived

positions on 12,281 days on a daily sampling interval, and had no positioning on 10,356 days. The Kalman

smoother provides an estimate of float position for every day regardless of how many acoustic ranges

are available.

2.3. SOSE Particle Release Simulations

To complement the RAFOS-enabled and satellite-tracked data sets for estimating uncertainties due to posi-

tion loss while profiling floats are under ice, we conducted particle release experiments in the SOSE (Mazloff

et al., 2010). SOSE is an eddy-permitting 0.16∘ Massachusetts Institute of Technology General Circulation

Model, which is fit by constrained least squares to altimetry and water property data sets; depths are dis-

cretized into 42 levels of decreasing resolutionwith a domain spanning from 24.7∘S to 78∘S. The current SOSE

version (iteration 100) spans 6 years (2005–2010). While SOSE has been extensively validated (Abernathey

et al., 2016; Cerovečki et al., 2013), SOSE has known errors and biases but is a powerful tool that can be used to

diagnose Southern Ocean variability. SOSE currently assimilates all satellite-tracked and linearly interpolated

Argo profiles. A module has been developed to simulate and track the release of Lagrangian particles (Wang

et al., 2014) at specified depths in the water column. One thousand simulated particles were released at loca-

tions distributed throughout our geographic region in water depths greater than 1,000m. The particles were

tracked for 1,500 days starting 1 January 2005, saving the resulting positions every 2 days. All particles were

assigned to depth level 23, corresponding to a depth of 950 m. Only particle trajectories within the original

region are analyzed here. The final model output contained 611,022 position measurements (a subsample of

particle tracks is shown in Figure 3c).

2.4. SOSE Air-Sea Fluxes

One goal of this manuscript is to assess the uncertainty in interpreting under-ice processes that arises

from projecting external Eulerian surface boundary conditions onto Lagrangian observations at interpolated

positions. Direct flux observations lack the temporal and spatial resolutions in this region to perform this

calculation, so we analyzed daily-averaged surface heat flux, salinity flux, and buoyancy flux output from

SOSE (Ceroveċki et al., 2011). As a validation of the SOSE air-sea fluxes, Ceroveċki et al. (2011) show that the

air-sea fluxes that are adjusted by SOSE from initial National Center for Environmental Prediction or Euro-

pean Reanalysis-Interim flux fields are more representative of directly observed air-sea fluxes than the initial

National Center for Environmental Prediction or European Reanalysis-Interim reanalysis fields.

Following Ceroveċki et al. (2011), buoyancy flux is expressed in units of heat-equivalent buoyancy flux and is

the sum of air-sea heat flux and freshwater heat-equivalent flux

QBF = QHF − QFW =
�0cp

g�
B, (2)

where the buoyancy flux B is given by

B = BHF + BFW =
g

�0

[
�QHF

c�
− �0�S(E − P)

]
, (3)

and g is the gravitational constant, �0 is a reference density, cp is the specific heat of seawater, S is the surface

salinity, E is evaporation, P is precipitation, and � and � are the thermal expansion and saline contraction

coefficients, respectively. In the Southern Ocean, the freshwater contribution to buoyancy flux is significantly
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greater than the air-sea heat flux and dominates equation (2) (Ceroveċki et al., 2011). For our analysis, we

restricted ourmodel output to theWeddell Gyre and to locations where themodeled ice concentration value

was greater than 20%. This SOSE output comprised 28,470 daily averaged model values for each flux type.

2.5. Float Velocity Comparisons

Our results rely heavily on the assumption that the position statistics of the RAFOS, satellite-tracked, and SOSE

data sets are similar. To validate this hypothesis, we compared the derived speeds of all three data sets. Float

speeds are calculated by finding the difference between successive positions and dividing by the positioning

time interval. Aprobability density functionof theRAFOS-enabledfloat (daily sampling), satellite-trackedfloat

(10-day sampling), and SOSE particle (2-day sampling) speeds is shown in Figure 5. As can be seen by the

progressive leftward shift in the peak of the normalized histogram, the mean speed of the more frequently

tracked RAFOS-enabled float data set is 2.75 km/day, the mean speed of the satellite-tracked float data set is

2.16 km/day, and the mean speed of the SOSE particle experiment is 1.90 km/day.

There is no difference between the pressure case of RAFOS-enabled and satellite-tracked Argo floats, so

we expect their motion through the water to be the same. To further investigate the 0.6-km/day difference

between the RAFOS- and satellite-tracked mean speeds, we subsampled the RAFOS-enabled float positions

at a 10-day interval—the same used by satellite-tracked floats; the position subsampled RAFOS-enabled data

set had a mean speed of 2.32 km/day. In addition to the tracking method, the main differences between

the subsampled RAFOS-enabled data set and the satellite-tracked data set are that the former contains far

fewer floats and also samples in the southern (and ice covered) regime of the Weddell Gyre. The subsampled

RAFOS-enabled data set consisted of 2,239 calculated speed instances compared to 3,640 speed instances

in the satellite-tracked data set. We suspect that the difference of 0.16 km/day is likely due to statistical

uncertainty due to sample size and comparison of the derived speeds (and positions) of these data sets is

appropriate, although it is possible that either there exists aWeddell Gyre circulation regime sampling bias in

these data sets or a tendency of the Kalman smoother to overestimate velocities.

As shown in the previous calculation, when float tracks are linearly interpolated, calculated speed is biased

lowbecause the distance between linearly interpolated positions is shorter than the true float path. To further

compare the 10-day sampling interval of satellite-tracked floats and the daily sampling interval of RAFOS float

tracking, we calculated the difference in mean speed between acoustically positioned float tracks and the

interpolated float tracks of the RAFOS-enabled float data set during all periods of position loss (Figure 5b).

These data are color coded by duration of position loss. In general, we see greater speed differences during

periods of longer position loss, as expected.

There are two limits for the speeddifferencebetween the acoustically positionedfloat tracks and linearly inter-

polated float tracks: the turbulent limit where the float speed difference is equal to the acoustically tracked

speed and the mean limit where the float speed difference is equal to 0. We observe a significant number of

float paths approaching both of these limits. Average speed differences between RAFOS-enabled float veloc-

ities and interpolated Argo float velocities were 1.59 cm/s for periods of position loss greater than 180 days

and 0.39 cm/s for periods of position loss less than 180 days. This discrepancy in speed underscores the need

for an assessment of the uncertainty of the linear interpolation approximation.Wong and Riser (2011), analyz-

ing seasonal ice zone Argo floats in the East Antarctic sector, similarly noted that the 10-day satellite derived

tracks of ice-free Argo floats are almost 3 times longer than when those are linearly interpolated through the

sea ice season.

3. Position Uncertainty Estimate

Autonomous floats are increasingly being used for under ice observations, for example, 30 SOCCOM floats

are under ice in austral winter 2018. Linear interpolation of latitude-longitude is the commonly used (and

accepted) approximation for position while under ice, but uncertainties arising from this approximation have

never been quantified. A related question is whether linear interpolation in latitude-longitude is the most

reasonable choice or might another interpolation scheme be better? Bathymetry has been demonstrated to
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Figure 5. (a) Normalized probability density function of RAFOS-enabled

float speeds (red), satellite-tracked float speeds (blue), and SOSE particle

speeds (yellow) in the Weddell Sea; (b) mean acoustically derived speed

minus mean interpolated speed for all periods of total interpolated position

time in the RAFOS-enabled float data set. Color of points indicates duration

of position loss. SOSE = Southern Ocean State Estimate.

affect float trajectories in the Southern Ocean, for example, floats in equiv-

alent barotropic flows tend to follow PV contours (LaCasce & Speer, 1999;

Reeve et al., 2015), and isolated bathymetric features form Taylor columns

that steer float trajectories (Meredith et al., 2015); these examples sug-

gest that a PV-contour following approach might better approximate the

trajectories and improve the uncertainties.

We use float and model position data sets, including highly resolved

RAFOS-trackedpositions aswell as 10-dayGPS-trackedprofiling float posi-

tions, to estimatepositionuncertainty as a functionof timeof position loss.

We estimate position uncertainty by withholding known position infor-

mation and linearly interpolating in both latitude-longitude and PV coor-

dinates. These linearly interpolated tracks are then compared to known

position information, and statistics are averaged.

3.1. Methods

We assess the uncertainty in position loss due to lack of tracking with

trajectories for our three independent data sets during periods of com-

plete trackingwithout sea ice cover (satellite-tracked, RAFOS-enabled, and

SOSE particle release) and compare the actual positions with interpo-

lated positions during simulated sea ice cover. Ice cover is simulated by

the application of a data withholding experiment; as the name implies,

the experiment withholds information from a test case and compares the

conclusions drawn from the limited information test to those of the full

information case. In this application, we compare a specified duration of

float or particle track locations (which we call a record) to the positions

generated by a linear interpolation of the endpoints of this record (see

Figure 7a). The time of each position as well as the great circle distance

between the actual and linearly interpolated positions are saved.

All interpolation in this publication is linear and is carried out in either

latitude/longitude coordinates, which is the method applied in the Argo

float data set, or PV coordinates. The location of any linearly interpo-

lated profile is calculated in each axis by multiplying the axis distance

between record end points by the ratio of time of the interpolated profile

to total time of the record. Interpolation in latitude and longitude coordi-

nates is straightforward. It is important to note that linear interpolation in

latitude-longitude does not necessarily follow a great circle path.

Linear interpolation in PV coordinates requires more work. PV conserva-

tion in barotropic planetary-geostrophic flows is expressed as

D(PV)

Dt
= 0, PV =

f + �

h
≈

f

h
, (4)

where PV is potential vorticity, f is the Coriolis parameter, h is the water depth, and � is the relative vorticity.

Under these conditions, PV is a material invariant and barotropic flows align with fh−1 contours. At high lati-

tudes, such as in theWeddell Sea, where thewater column ismuch less stratified that at lower latitudes, flow is

close to equivalent barotropic (unidirectional from top to bottom, although vertically sheared) and thus likely

to follow fh−1 contours. Consequently, in PV coordinates, our two axes of consideration are along fh−1 con-

tours and across fh−1 contours. PV at the beginning and end point of a record is not usually the same (hence

floats are not perfectly conserving PV). We linearly interpolate along the two axes: along-PV and across-PV.

PV (fh−1) is computed using theGaussian smoothed 0.16∘ bathymetry fromSOSE, which is based on the Earth

Topography Five-Minute Grid and Smith and Sandwell; these data sets are binned to a 0.25∘ resolution and

then interpolated to the SOSE grid. A steepest descent (or ascent depending on the change in PV) algorithm

is applied to the location at the end of the record to find the across-PV axis, and an along-gradient algorithm

is used from the start of the record to find the along-PV axis (examples in Figures 6a–6c). The intersection

of the along-gradient and steepest descent algorithms define the lengths of the PV axes. The two axes are
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Figure 6. Selected float track data for RAFOS, satellite, and SOSE particle data sets. Actual trajectories (blue dots) are

compared with PV interpolation (red dots) and linear interpolation (green dots). Along PV axis (pink dots), across PV axis

(pink dashes), and bathymetry (black lines) are provided for context. (a) RAFOS tracking of of WMO float ID 5901739 for

210 days from 17 May 2009 to 13 December 2009; (b) satellite tracking of WMO float ID 6900585 for 60 days from 6

January 2010 to 7 March 2010; (c) SOSE particle 722 subsampled for 240 days from 23 April 2007 to 19 December 2007;

(d) size of all data sets: satellite (yellow), RAFOS (red), and SOSE (blue) for linear (solid) and PV (dots) interpolation by

time interval. SOSE = Southern Ocean State Estimate; PV = potential vorticity.

then linearly interpolated to find the track in PV coordinates. Bathymetry is, in general, nonlinear; the track

generated by reversing the start and end point may not be the same as the original. We calculate both the

forward and backward PV interpolations and save the record with the minimummean error. Records with no

intersection between the along- and across-PV contours were rejected from our analysis.

The character of position uncertainty as a function of time depends on the total time of position loss (record

length, i.e., the total amount of time under ice), and the length of time since the position was measured for

that given record length.We define these two separate quantities as total interpolated position time (TIPT) and

interpolated position time (IPT). TIPT is identical to record length. We have used TIPTs of 1 to 8 months (30 to

240 days), in increments of 1 month. IPT ranges from 0 to TIPT, in increments of 1 day. To estimate position

uncertainty as a functionof TIPT and IPT,weuse float position records that are complete (nomissingpositions)

and perform data withholding experiments. We randomly sampled 1,000 records for each specified period of

TIPT and calculated the ensemble standard deviation relative to linear interpolation for IPT intervals of 1 day

within the TIPT. This procedurewas then repeated for a rangeof TIPTs, from1 to 8months inmonthly intervals.

To estimate a robust standard deviation of the position uncertainty for a given IPT (within a given TIPT), we

repeated this data withholding experiment many times using many different observed records.

To ensure the position data were appropriate for estimating the impact of linear interpolation in the Wed-

dell Gyre, we imposed several criteria: records with data gaps 3 times longer than the sampling interval

(6 days of position loss for SOSE, 30 days of position loss for satellite tracking, and 3 days of position loss for

RAFOS-enabled tracking) were rejected. Similarly, records with positions outside of the Weddell Gyre were

rejected. Lastly, in order to enforce a degree of independence, we allowed no greater than a 50% time overlap

in records.
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Figure 7. Position uncertainty as a function of interpolated position time, based on the difference between the actual

track and the linear and potential vorticity interpolations of the track: (a) satellite positioning derived standard deviation

of position uncertainty from 164 floats; (b) RAFOS positioning derived standard deviation of position uncertainty from

22 floats; (c) SOSE-derived standard deviation of position uncertainty from 1,000 particles. For all uncertainty estimates

(a–c), colored curves are mean position uncertainty of linear (solid) and potential vorticity (dots) interpolation in

monthly time intervals (total interpolated position time). Gray-shaded gray areas are standard deviation in the

uncertainty estimate. (d) Maximum seasonal position uncertainty estimates for all three data sets for summer (stars) and

winter (circles) with linear (solid) and potential vorticity (dots) interpolation. SOSE = Southern Ocean State Estimate.

The entireWeddell Gyre is ice-coveredduring australwinter. Consequently, the number of satellite-positioned

float tracks that satisfied our linear interpolation criteria decays significantly in winter (data density in

Figure 6d). Because of this, we were only able to compute statistically significant satellite-tracked position

uncertainty for 4 months. This was not an issue for the acoustically tracked floats and SOSE-simulated floats,

for which under-ice positions are known. Also, because of the relatively long sampling interval (10 days) of the

Argo float tracks, we binned and averaged the mean satellite-tracked data set position uncertainty estimates

in 10-day segments. This was not necessary for the acoustically tracked floats and the SOSE output due to the

much higher frequency of positioning.

In the Southern Ocean (Figure 1), the sea ice edge moves from north to south from winter to summer. In the

Weddell Gyre, the longest interpolation-free records are located in the northeast. The northeastern region

is dynamically different from the west, as seen in the kinetic energy field (regional map in Figure 3b). This

may cause a sampling bias in the satellite-tracked uncertainty estimate, which is based on records with no

missing positions, as these ice-free records are biased toward the northeastern Weddell Gyre. Our estimate

in latitude-longitude assumes position uncertainty to be isotropic within this region, whereas the estimate in

PV coordinates accounts for bathymetrically controlled fronts and current meanders. Both estimates assume

the position uncertainty statistics are unvarying in time; in the following section, we show a seasonal analysis

that supports this assumption.

3.2. Results

The standard deviation of the position uncertainty relative to linear interpolation as a function of IPT, for all

TIPTs, data type, and interpolation scheme, is shown in Figure 7. The interpolated latitude-longitude position
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uncertainty estimates derived from the satellite- and the RAFOS-tracked data sets show excellent agreement

for all TIPTs for which we had sufficient data to make these estimates. The SOSE position uncertainties are

consistently lower than those from both float analyses. Comparisons of PV interpolation to linear interpo-

lation were spatially structured and generally confirmed the hypothesis that floats follow PV contours: PV

interpolation was better than linear interpolation for all data sets.

The averaged position uncertainty curves (Figures 7a–7c) have a quadratic shape as a function of IPT, for all

three data sets, with highest position uncertainty at the middle of the time interval and with that maximum

uncertainty increasing with total period of position loss. This maximum amplitude of position uncertainty

increases linearly with period of position loss (Figure 7d). The quadratic shape is clearly defined for the SOSE

model (2-day timing) and similarly for the relatively continuously tracked RAFOS data (1-day tracking). The

satellite-tracked results (10-day interval) aremuchmore variable especially for the longer position loss periods

(3 and 4 months), likely due to the smaller number of long records available for analysis since they must be

collected during ice-free periods (Figure 7a).

The position uncertainty curves are summarized by selecting the maximum position uncertainty for each

monthly time period (TIPT), plotted in Figure 7d. The maximum value for a TIPT of 8 months of position loss,

from the interpolated latitude-longitude RAFOS-tracked data set (the value we report in our summary and

abstract), is 116± 148 km and increased essentially linearly from 0 TIPT at a rate of 0.48 km/day. PV interpola-

tion for the same TIPT and data set was 92± 121 km and increased 0.38 km/day. The satellite-tracked data set

latitude-longitude interpolation position uncertainty increased 0.54 km/day. PV interpolation position uncer-

tainty for the same data set increased at 0.47 km/day. The high 4-month PV interpolation position uncertainty

estimate is an unexpected result and could be an outlier because it does notmatch the linear trend of the rest

of the graph and because of the small number of 4-month satellite-tracked records thatmet our PV interpola-

tion criteria. The SOSEparticle release simulations have a categorically smallermaximumposition uncertainty.

Latitude-longitude and PV interpolations yield a position uncertainty of 98± 130 and 72± 97 km for 8months

of position loss, respectively. Position uncertainty of the SOSE data set increased at a rate of 0.41 km/day for

linear interpolation and 0.30 km/day for PV interpolation. The ranges of these position uncertainty estimates

(Figure 7d) suggest that SOSE underestimates the position uncertainty compared with both the satellite-

and RAFOS-tracked data sets by a factor of 80%. Note that the position uncertainty estimates of each of the

three data sets are within a standard deviation of the other two, which means that the differences might not

be significant.

Figure 7d also shows the seasonal differences in maximum position uncertainty. Summer RAFOS-derived

position uncertainty is generally higher than winter position uncertainty; conversely, winter SOSE-derived

position uncertainty is categorically higher than summer position uncertainty. Satellite-derived position

uncertainty (a more variable signal) is higher in summer or winter depending on the prescribed TIPT. Max-

imum difference between the winter- and summer-estimated positions uncertainties is for the 120-day

satellite-estimated position uncertainty, which seems to be an outlier. All other winter-summer position

uncertainty differences were within 15%. From this, we conclude that there is an insignificant seasonal dif-

ference in the position uncertainty statistics, which suggests similarities in the under-ice and open ocean

eddy fields.

The spatial structure of linear interpolation minus PV interpolation for the SOSE data set is shown in Figure 8

and adds some qualification to the hypothesis of Reeve et al. (2015) that floats follow PV contours in the

Weddell Gyre. PV interpolation is generally more accurate at the edge of the gyre in regions of consistent and

steepbathymetry and fails in relatively flat areas or regions of complicatedbathymetry. This analysis, although

intuitive, may be biased by SOSE’s underestimation of position uncertainty.

The quadratic shape of the position uncertainty curves is discussed from basic principles in the next subsec-

tion. The equivalence between the satelite- and RAFOS-tracked results and difference from the SOSE results

are also discussed, with suggestions for estimating position uncertainty in other ice-covered regions that do

not have acoustic tracking.

3.3. Discussion
3.3.1. Quadratic Form of Position Uncertainty

Themeanposition uncertainty curves for each TIPT shown in Figures 7a–7c have distinctive quadratic shapes,

especially whenmany records are available. Float position decorrelates in time (Balwada et al., 2016). When a

float is under ice, we have in hindsight the most accurate position information about the float both immedi-
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Figure 8. Spatial distribution of linear interpolation uncertainty minus PV interpolation uncertainty (km/day) of

Southern Ocean State Estimate data withholding experiment. Red and blue coloring represents the spatially binned and

averaged maximum position uncertainty for linear and PV interpolation normalized by period of position loss. Gray lines

represent isobaths in 1-km intervals. PV = potential vorticity.

ately after the float submerges under the ice and immediately before the float emerges from the ice. Averaged

over many realizations, we observe that float position uncertainty is maximum when IPT is half of TIPT. This

is clearly because this time is most removed from the start and end times, when the position is known. Less

obvious is why the functional relationship of position uncertainty to time is quadratic.

A well-developed body of literature surrounding the so-called Brownian Bridge explains continuous-time

stochastic processes with fixed probabilities at both the start and end points. As we will show below, this

mathematical construction describes the quadratic shape of the uncertainty curves shown in the previous

section and provides some insight into the oceanic mechanisms at play. We will first show that our inter-

polation process matches the definitions of a Brownian Bridge in one dimension, then expand to show the

Brownian Bridge criteria are satisfied in two dimensions, and finally introduce advection.

As the simplest example of a Wiener process, let x(t) ∈ R be Brownian motion observed on 0 < t < T : that

is, to say that the motion of the float path is random. By definition for Brownian motion, the expected value

E[x(t)] = 0, or the motion is unbiased, and the covariance is Cov[x(t1), x(t2)] = �2t1, where t1 < t2for some

� > 0. In the context of the ocean’s velocity field, �2 has units of diffusivity and is the instantaneous variance

at any time t of float velocity perturbations, which are assumed to be uncorrelated over time. This variance

results fromany randomprocess that affects float position—this couldbe shear in theupper ocean, advection

from wind before or after positioning, perturbation from the eddy field, and so forth. It is important to note

that �2 is not diffusivity as typically defined (LaCasce et al., 2014) because it is calculated using the absolute

distance away from an interpolated position track instead of the actual mean flow.

Suppose the process is not observed over an interval 0 < t < T . Its interpolated positions, as described in

section 3.1, are

xL(t) = x(0) +
t

T
[x(T) − x(0)]. (5)

Conditioned on the values x(0) and x(T), the anchored process x(t)|x(0), x(T) is a Brownian bridge (Revuz &

Yor, 2013). Then the following are well known:

E[x(t)|x(0), x(T)] = xL(t), Cov[x(t1), x(t2)|x(0), x(T)] = �2
t2(T − t1)

T
.

In particular, the mean squared error is

E[x(t) − xL(t)|x(0), x(T)]2 = Var[x(t)|x(0), x(T)] = �2 t(T − t)

T
.
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Note that this expression does not depend on x(0) and x(T), so it also holds unconditionally at x(0) and x(T):

E[x(t) − xL(t)]
2 = �2 t(T − t)

T
.

√
E[x(t) − xL(t)]

2 =

√
�2

t(T − t)

T
. (6)

This is similar to the quadratic structure that we see in our results.

To show that this is a robust result in two dimensions, let (x(t), y(t)) ∈ R
2 be composed of two independent

Brownian motion processes x(t) and y(t) with the same variance. Let d denote Euclidean distance. Based on

the results of the previous section,

E
{
d2

[
(x(t), y(t)), (xL(t), yL(t))

]}
= E[x(t) − xL(t)]

2 + E[y(t) − yL(t)]
2 = 2�2 t(T − t)

T
, (7)

which is of the same functional form as the one-dimensional case and matches the quadratic structure seen

in our results (Figure 7).

Finally, consider the addition of advection to our two-dimensional diffusive process: A simple

advective-diffusion process with a constant velocity field (u, v) can be described as (x(t)+ut, y(t)+ vt), where

x(t) and y(t) are independent Brownian motion processes as before. Conditioned on two known locations

(x(0), y(0)) and (x(T) + uT , y(T) + vT) at times t = 0 and t = T , the process in between is a Brownian bridge

with mean (
xL(t) + ut, yL(t) + vt

)
.

This is also the same as linear interpolation between the two points. Subtracting the mean gives the Brown-

ian bridge process (x(t), y(t)) in R
2, which is the same as in the previous subsection. Therefore, the position

uncertainty thatwe have estimated fromobservations should be approximated by (7). This implicitly assumes

that over many realizations of the data, tracks generated from linear interpolation approximate the mean

circulation, and any deviations from the latitude-longitude or PV interpolation are due to float velocity per-

turbations caused by themesoscale eddy field: random processes explain the growth of position uncertainty

after a float is lost under the ice and the decline of position uncertainty before a float emerges from the ice.

Over many realizations, the float velocity perturbation variance (�2), which affects the growth and decline

of position uncertainty, should be the same. The Gaussian statistics that this method assumes might break

down in fronts or regions of strong velocity gradients. In those regions, othermethods of position uncertainty

analysis should be considered.

The float velocity perturbation variance �2 estimated by fitting the position uncertainty curves in

Figures 7a–7c ranges from 159 to 2,614 m2/s. It is smallest for shortest TIPT and increases with TIPT. If �2 rep-

resented the actual lateral diffusivity, it would be independent of TIPT. Its dependence on TIPT results from

calculating �2 relative to the linearly interpolated tracks rather than the actual (unknown) mean flow. That is,

unsurprisingly, the longer the period of linear interpolation, the less representative the linearly interpolated

track is of the actual mean flow.

3.3.2. Application to Ice-Covered Regions Other Than the Weddell Gyre

Can we usefully apply this method of deriving position uncertainty statistics in other ice-covered regions

where RAFOS-tracked floats are not available? The agreement between the linearly interpolated satellite- and

RAFOS-tracked results (Figure 7) suggests that we can, recognizing the sampling interval (10 days) for the

satellite-tracked floats is longer than for RAFOS tracking (1 day) and there are shorter and fewer continuously

tracked records (during ice-free periods) for satellite-tracked floats. The detailed position uncertainty curves

for these patchier satellite-tracked records have amore variable mean and standard deviation because of the

lack of samples, but the maximum uncertainties appear robust in this Weddell Gyre example. This may seem

surprising given that Figure 5a shows that the frequency of position sampling matters in the composition of

the velocity spectrum. Awide range of physical phenomena affects float position on different space and time

scales, frommesoscale variations andbasin circulations to eddy instabilities and inertialmotion. Ten-day sam-

plingmay underresolve this mesoscale variability, and because of this, the satellite trackingmay be expected

to underestimate some of the true position uncertainty.

As seen in Figure 7d, these potential sources of difference between the satellite-tracked and RAFOS-enabled

data sets do not seem tomatter. We conclude that even though the RAFOS-tracked floats have a highermean
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daily velocity and greater probability of higher speeds (section 2.5; Figure 5a), the higher frequency compo-

nents of the velocity spectrumcancel out on time scales ofmonths, so that overmany realizations, theposition

uncertainty estimates are the same. Therefore, we suggest that position uncertainties using satellite-tracked

floats alone could be informative, given that RAFOS tracking is not available in any other Southern Ocean

ice-covered regions.

The difference between the float and the 0.16∘ SOSE results suggests caution in using SOSE particle track-

ing to estimate position loss uncertainty, although the quadratic functional form is correct. SOSE is an

eddy-permitting simulation; hence, themodel resolution of 0.16∘ does not capture the first baroclinic Rossby

radius at these higher latitudes, which may underestimate the uncertainty due to an unresolved mesoscale

field. Additionally, ice covermaymask thedynamic sea surfaceheightderived fromsatelliteproducts andused

by SOSE.With few advectivemeasurements in theWeddell Gyre, SOSEmay underestimate the truemesoscale

variability. We see this in the results as SOSE position uncertainty estimates are universally lower than either

the satellite positioning or RAFOS-enabled track estimates (Figure 7d). While SOSE is quantitatively different

from in situ measurements, the linear increase of the SOSE uncertainty estimate is qualitatively the same.

This suggests that a higher-resolution SOSE model with a more energetic mesoscale eddy field might more

accurately reproduce position uncertainty statistics.

With plannedmissions to deploy floats in the inflowof the southwestern sector of theWeddell Gyre, we antic-

ipate that floats under ice for two ice seasons will become more common. It is tempting to extrapolate the

straight lines of Figure 7f to estimate position uncertainty of floats with position loss greater than 8 months.

It is not clear, though, that the uncertainty will remain linear for periods longer than this.

4. Temperature, Salinity, and Air-Sea Flux Spatial Correlation and Uncertainty

Temperature and salinity are spatially and temporally correlated.Many types of surface processes—solar forc-

ing, buoyancy or heat fluxes from storms, and sea ice melt—span large spatial areas. Our overall goal is to

estimate the representation error that the linear interpolation of position introduces in temperature and salin-

ity products. Representation error is independent of float sensor error. Applications like state estimation or

objectivemapping incorporate observations and require a robust and accurate accountingof all uncertainties

in the observations, which include both representation and sensor error.

In the previous section, we estimated how far floats might deviate from interpolated latitude-longitude or

PV coordinates; this is the distance for which we will calculate the strength of the oceanic connection. In this

section we calculate the correlation length scales of temperature, salinity, and associated fluxes; this is the

strength of the oceanic connection at all distances. We then combine correlation length scales and position

uncertainty to estimate the representation error.

4.1. Methods

Themethod for calculating temperature and salinity spatial correlations fromdiscrete, randomly spaced Argo

floats that do not measure the entire field continuously is described in section 4.1.1 and is based on Ninove

et al. (2016). For analysis of Lagrangian data following a float, gridded Eulerian fields are often employed. Float

position uncertainty introduces representation errorswhenusing Eulerian fields; the representation errors are

estimated from spatial correlations. In section 4.1.2, we estimate spatial correlation scales of temperature and

salinity surface flux from gridded SOSE output. Finally, in section 4.1.3, we use distance as a linear predictor to

estimate the representation error field of using one temperature and salinity profile to approximate another

at a specified distance.

4.1.1. Temperature and Salinity Correlation Length Scales

Resolving the statistics of a field with irregular space and time sampling is a common problem for oceanogra-

phers. We use a modified version of the approach in Ninove et al. (2016), who assembled float data collected

in the same time frame, detrended the data, and binned the data by distance to create a discrete- and

time-dependent data set from which they estimated a continuous time independent correlation field as a

function of distance. In particular, they calculated the seasonally corrected anomaly field by first subtracting

the 2009World Ocean Atlas 1∘ objectively mapped annual mean climatology (Antonov et al., 2010; Locarnini

et al., 2010) and then removing a localized seasonal climatology calculated from in situ observations.

Our goal is to assess the induced representation error of projecting a true profile location onto a linearly

interpolated position. Observations made in the same season experience similar forcing with relatively little
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spatial variability over the scale of theWeddell Gyre, which increases their correlation (reduces representation

error). Leaving the seasonal signal of the temperature and salinity profiles intact reflects knowledge that the

true observation and the linearly interpolated observation are recorded at the same time. Consequently, we

move the profile only in space and not time, so we depart fromNinove et al. (2016) and remove only the SOSE

temperature and salinity mean at the location of the profile.

Most Argo floats profile at 10-day intervals, so, to prevent successivemeasurements from the samefloat being

compared against itself, we bin the data set by weekly intervals. Next, we calculate the distance between

every float pair in a given week. Paired measurements for all depths and densities are binned in increments

of 35 km. Ninove et al. (2016) chose to bin results by their zonal and meridional distance. It is hypothesized

that water properties should have higher correlation along streamlines. LaCasce and Speer (1999) found that

modeled particles were 6 timesmore dispersive along PV coordinates as across. Reeve et al. (2015) objectively

mapped the subsurface temperaturemaximumusing similar reasoning butwith length scales determined by

the realities of data density. Building on this, it is more useful to bin temperature and salinity data by absolute

distance in latitude-longitude and PV coordinates thanby the axis of eachmetric. A description of ourmethod

to calculate PV coordinates can be found in section 3.1.

We calculate the correlations betweenmeasurements in these distance and depth bins using a Pearson r test

masked at a 90% confidence level using a temporal decorrelation of 35 days, determined by Gille and Kelly

(1996) using altimetry data averaged over the whole Southern Ocean.

Correlation is expressed as

� = corr(X, Y) =
cov(X, Y)

�X�Y
=

E[(X − �X )(Y − �Y )]

�X�Y
. (8)

In words, this is an expression for how X and Y change together scaled by the standard deviation of both X

and Y , where X and Y represent the binned pairs of temperature or salinity, � is the standard deviation, and �

is the mean.

The vertical sampling intervals reported for individual float profiles are not uniform. We linearly interpolate

all profiles to World Ocean Atlas 2013 version 2 depths (Locarnini et al., 2013; Zweng et al., 2013), to the max-

imum depth of 2,000 m for Argo floats. This is sufficient to resolve significant features such as the mixed layer

and pycnocline. Additionally, we interpolate these data to prescribed levels of potential density referenced

to surface pressure using the Gibbs SeaWater package (McDougall & Barker, 2011) in 0.05-kg/m3 increments.

Observed densities varied from 1,026.2 to 1,028.2 kg/m3, although there were only enough data to calculate

correlations in the range 1,027.1–1,027.7 kg/m3.

4.1.2. Temperature and Salinity Flux Correlation Length Scales

As a separate question of spatial uncertainty, it is often useful to interpret themeasured Lagrangian profiles in

the context of surface fluxes from an external gridded data set. If a float is assigned an interpolated position,

what is the uncertainty in these boundary values? Although any gridded surface data could be used, we have

chosen the adjusted air-sea fluxes of heat, freshwater, and buoyancy from SOSE (section 2.4).

We estimate the correlation length scales for SOSE heat, buoyancy, and salinity fluxes by creating a grid of

points within the domain at 3∘ intervals of latitude and longitude. Using the heat, buoyancy, and salinity flux

time series at all of these grid points, we calculated several spatially lagged correlations with the time series

record of all points within a higher-resolution grid of the Weddell Gyre separated by 0.5∘ intervals of latitude

and longitude. The calculations had three time domains: the entire time series, austral summer (15 November

to 15 March), and austral winter (15 May to 15 September). We assumed heat, salinity, and buoyancy fluxes

have a similar decorrelation time scale as temperature and salinity (35 days); because of this, we were gen-

erous in our seasonal definitions (4 months for summer and winter) to include as many degrees of freedom

as possible.

After the correlation calculations, we binned the results by distance in 5-km segments and calculated the

average salinity, heat, and buoyancy flux correlation in each bin. Results are given in section 4.2.2.

4.1.3. Uncertainty Field and Representation Error Calculation

Finally, we used the calculated correlations to estimate the uncertainty (error) of a field. Our analysis is moti-

vated by the intuition that if two locations are perfectly correlated, knowing a value at one location should

allow you to know the value at the other. Similarly, if two locations are perfectly uncorrelated, knowing the

value at one location yields no information about the value at the other location.
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Expanding on this, let T(x) ∈ R be a random temperature or salinity field, as a function of location. Let X ∈ R
2

be a random assumed location of the float, and let Xtrue ∈ R
2 be the true location. Assuming that the field

T(x) changes slowly in x, we make a linear approximation at Xtrue, by defining the linear predictor:

L[T(X)|T(Xtrue)] = E[T(X)] +
cov[T(X), T(Xtrue)]

var(T(Xtrue))
[T(Xtrue) − E(T(Xtrue)],

where L[T(X)|T(Xtrue)] is the linear predictor, cov[T(X), T(Xtrue)] is the covariance of the value of the field at the
random location and the value of the field at the true location, E(X) and E(Xtrue) are the expected values of the

field at X and Xtrue, respectively, and var(T) is the variance of the field. We can write the mean square error of

this linear predictor:

�2
rep

= E[(T(X) − L)2] = var(T) −
cov[T(X), T(Xtrue)]

2

var(T)

= var(T)

[
1 −

cov[T(X), T(Xtrue)]
2

var(T)2

]

= var(T)[1 − cor[T(X), T(Xtrue)]
2].

(9)

�rep is the representation error. cor[T(X), T(Xtrue)] is the correlation of T between positions X and Xtrue. X can

be distance in any metric—herein, we consider both latitude-longitude and PV coordinates. Notice that if

cor[T(X), T(Xtrue)] = 1, meaning the interpolated position is perfectly correlated with the true position, the

measured value projects exactly onto the interpolated data and the total error will be only the measurement

error. Conversely, if cor[T(X), T(Xtrue)] = 0, the interpolated position is exactly uncorrelated with the inter-

polated position, and the measured value provides us no information about the value at the interpolated

location. The error is then maximum and equal to the entire variance of the data set. This is the quantified

uncertainty that matches our original intuition.

The total error, due to both representation error �rep and sensor error �sensor, arising from accuracy of the

instrumental observation, is

�total =

√
�2
sensor

+ �2
rep

. (10)

where �sensor is reported from the manufacturer as 0.002 psu for salinity and 0.002 ∘C for temperature. Total

error results are presented in the following sections.

4.2. Results
4.2.1. Temperature and Salinity Correlation Scales and Total Error

Temperature and salinity correlations are illustrated in Figures 9–12, along with the total error, which is the

sum of representation error and sensor error (equation (10)). (The error field is discussed further in section

4.2.3, where it is shown that representation error dominates the total error, with sensor error much smaller.)

Correlations in temperature and salinity as a function of depth and distance were calculated in 65 depth lay-

ers from the surface to 2,000 m and distances from 35 to 1,000 km in 35-km increments (Figures 9 and 10).

Correlations and total error as a function of potential density and distance were calculated in four layers at

0.1 kg/m3 increments from27.3 to 27.7 kg/m3 with the samedistance binning as for depth (Figures 11 and 12).

The plotted correlations and errors are divided into two regimes: upper (0–300m) and deeper (300–2,000m)

ocean. The upper layer encompasses the fresh, very cold surface layer affected directly by sea ice, down

through the halocline to the temperature maximum/salinity maximum core of the upwelled North Atlantic

DeepWaters. The deeper layer includes the rest of these northernwaters and the top of theWeddell SeaDeep

Water (Orsi et al., 1993).

All correlation calculations (Figures 9–12) show, unsurprisingly, that temperature/salinity correlation decays

with increasing distance. Correlation length scales were longer in isopycnal layers (Figures 11 and 12) than in

depth layers (Figures 9 and 10). This is likely a result of transient eddies and waves causing isopycnal heave or

the sloping density structure of the gyre in theWeddell Gyre, which introduces noise and reduces correlation

along depth surfaces. Correlation length scales were marginally longer in PV than Euclidean coordinates and

with largely the same structure.

Total error within each layer increases with increasing distance, due to its dependence on correlation

(equation (9)). Correlation scales were the longest in the upper ocean with significant correlation extending

to 550 and 350 km in temperature and salinity, respectively (Figures 9a and 10a). The higher upper ocean
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Figure 9. (a) Temperature correlation as a function of distance and depth at 90% confidence. (b) Total temperature error

as a function of distance and depth at 90% confidence in regimes above and below 300 m. (c) Temperature correlation

as a function of distance in PV coordinates and depth at 90% confidence. (d) Total temperature error as a function of

distance in PV coordinates and depth at 90% confidence in regimes above and below 300 m. (e) Temperature

correlation as a function of distance averaged over 0–300 m and over 300–2,000-m depth at 90% confidence; error bars

represent standard deviation in correlation over these depth ranges. (f ) Total temperature error as a function of distance

at 90% confidence averaged over 0–300- and 300–2,000-m depth; error bars represent standard deviation in error over

regime depths. PV = potential vorticity.

correlation compared with the deeper ocean is interpreted as resulting from the large spatial scale of air-sea

buoyancy flux due to the annual cycle and longer time scale atmospheric variability.

Low correlations between 100 and 200m are apparent in the full depth-resolution figures (Figures 9a, 9c, 10a,

and 10c). This is the depth range of the surface mixed layer and halocline (Figure 4), and as explained above,

correlations are low because of transient, localized heave of the highly stratified halocline.

Notably, the larger correlation scales in the upper ocean correspond to larger total error (Figures 9e, 9f, 10e,

and 10f): the upper layer error is higher because the surface layer variance is high, while the deeper layer has

more uniform temperature and salinity. We hypothesize that this is due to thewide range of overall variability

in surface temperature and salinity and their fluxes during ice-free periods. The float time series example in
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Figure 10. (a) Salinity correlation as a function of distance and depth at 90% confidence. (b) Total salinity error as a

function of distance and depth at 90% confidence in regimes above and below 300 m. (c) Salinity correlation as a

function of distance and depth at 90% confidence. (d) Total salinity error as a function of distance and depth at 90%

confidence in regimes above and below 300 m. (e) Salinity correlation as a function of distance averaged over 0–300-

and 300–2,000-m depth at 90% confidence; error bars represent standard deviation in correlation over these depth

ranges. (f ) Total salinity error as a function of distance at 90% confidence averaged over 0–300- and 300–2,000-m

depth; error bars represent standard deviation in error over regime depths. PV = potential vorticity.

Figure 4 shows the strong seasonal dependence of the temperature, salinity, and mixed layer depth in the

upper 200 m. This is a response to local surface forcing. An example of the along-track fluxes (from SOSE

output) experienced by WMO ID # Argo Float 5901717 (Figure 13) shows large variations in heat and salinity

flux during the ice-free seasons, with large spikes in fluxes during both ice formation and icemelt. The deeper

layer does not have such large external forcing. Temperature and salinity variance in the lower layer is smaller,

and hence, the total error is smaller.

4.2.2. Air-Sea Fluxes and Spatial Correlation Scales

SOSE surface fluxes into the ocean, along interpolated Argo tracks and RAFOS-enabled float tracks, are illus-

trated for float 5901717 (Figure 13). (Differences between the satellite-tracked and RAFOS-enabled float track

fluxes during ice-free periods are solely due to the difference in sampling interval between 10-day satellite

fixes and the daily acoustic positions; the fluxes match on the days of satellite fixes.) Fluxes were diagnosed

from SOSE output.
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Figure 11. (a) Temperature correlation as a function of density and distance at 90% confidence. (b) Total temperature

error as a function of distance and density at 90% confidence. (c) Temperature correlation as a function of density and

distance in PV coordinates at 90% confidence. (d) Total temperature error as a function of distance in PV coordinates

and density at 90% confidence. (e) Temperature correlation as a function of distance averaged over all density surfaces

at 90% confidence; error bars represent standard deviation in correlation over all densities. (f ) Total temperature error as

a function of distance at 90% confidence averaged over all density surfaces; error bars represent standard deviation in

error over all densities. PV = potential vorticity.

SOSE’s under-ice heat flux into the ocean for float 5901717 is relatively constant with a mean of −6.77 W/m2

(where positive flux heats the ocean). This trend of stable under ice heat fluxes is seen over all floats. The

average under-ice heat flux over the entire data set was−8.06W/m2. At the end of periods of position loss, we

observe a flux of fresh water into the ocean, closely followed by positive heat flux into the ocean which peaks

close to 200 W/m2. The time lag between the significant spikes in heat and salinity flux can be explained by

the seasonal cycle of sea ice formation and melt. At the end of the sea ice season, the energy that would be

entering the oceandue to increased solar forcing is instead stored in latent heat andused tomelt sea ice. Once

a significant fraction of the ice has melted, then heat enters the ocean as seen by the large spike in positive

heat flux and the observed time lag.
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Figure 12. (a) Salinity correlation as a function of density and distance at 90% confidence. (b) Total salinity error as a

function of distance and density at 90% confidence. (c) Salinity correlation as a function of density and distance in PV

coordinates at 90% confidence. (d) Total salinity error as a function of distance in PV coordinates and density at 90%

confidence. (e) Salinity correlation as a function of distance averaged over all density surfaces at 90% confidence; error

bars represent standard deviation in correlation over all densities. (f ) Total salinity error as a function of distance at 90%

confidence averaged over all density surfaces; error bars represent standard deviation in error over all densities.

PV = potential vorticity.

Conversely, at the beginning of the ice season, there is a significant flux of heat out of the ocean (on the order

of−200W/m2) closely followed by a salinity flux into the ocean. This is an example of seasonal forcing causing

sea ice formation followed by brine rejection. The sea ice, once formed, acts as a blanket on the ocean and

prevents significant air-sea flux.

Wehaveplotted the correlations and relateduncertainties ofmeanunder-ice surface fluxes into andout of the

ocean for heat, salinity, freshwater, and buoyancy as a function of distance (Figure 14). Similar to float salinity

and temperature measurements, surface fluxes at close separations are more correlated than locations that

are far apart. We observe that overall buoyancy flux is dominated by the salinity flux signal for these Wed-

dell Gyre floats. For 8 months of position loss, we calculate maximum heat flux, buoyancy flux, and salinity

flux errors to be 28.5 W/m2, 212.4 W/m2, and 1.8 × 10−3 kg ⋅m−2
⋅ s−1, respectively. Heat flux correlations are

independent of season. In contrast, salinity correlations are about 0.2 higher in summer than in winter; buoy-
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Figure 13. Comparison of RAFOS-enabled float and interpolated Argo float for float WMO5901717. (a) Map of tracks. Acoustically tracked float locations (red

dots), satellite-tracked float locations (blue dots), linearly interpolated location (green dots), and acoustic sound sources (stars). Shading is buoyancy flux,

temporally averaged over the entire SOSE record, reported in units of equivalent heat flux (W/m2). (b) Surface heat flux along the RAFOS-enabled (red) and

interpolated (green) Argo float tracks. (c) Surface salinity flux along the RAFOS-enabled (red) and interpolated (green) Argo float tracks. Gray shading indicates

periods of position loss due to sea ice, also labeled on the map.

ancy correlations follow salinity. This seasonal change in correlation results in a seasonal variation in the flux

uncertainty of buoyancy and heat of 34.2% and 27.2%, respectively. As seen in Figure 13, flux regimes depend

strongly on season and ice conditions. The difference between summer andwinter salinity correlations is due

to greater modeled regional structure during ice formation (and hence brine rejection) than to melting.

The SOSE flux results can also be used to examine our assumption of temporal invariability of correlation

scales of upper ocean properties—we hypothesize that correlation length scales of the upper ocean heat

and salinity should correspond with associated heat and salinity flux correlations. In Figure 14, we compare

the qualitative and quantitative structures of these calculated values by overlaying the ocean temperature

and salinity correlation averaged over the upper 50 m (described in section 4.2) on the heat and salinity flux
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Figure 14. Spatial correlation of surface fluxes from Southern Ocean State Estimate for (a) heat (b) buoyancy, and

(c) salinity, for winter (15 May to 15 September), summer (15 November to 15 March), and year round. Colored swath

around lines represent standard deviation of data in each bin. Red line is uncertainty calculated from year-round

correlation curve. Black line is upper ocean temperature and salinity correlation averaged over top 50 m (from Figures 9

and 10).

plots, respectively. We observe that temperature correlation is about 0.1 greater than heat flux correlation

and salinity correlationmatcheswell withwintertime salinity flux correlation. One component of upper ocean

temperature or salinity is the time integral of surface heat or salinity flux, so we hypothesize that the upper

ocean smooths high-frequency flux components of the heat and salinity flux signal. This could result in longer

correlation scales for upper ocean temperature and salinity than for heat and salinity flux. It is problematic

then that upper ocean salinity correlation closely matches wintertime salinity flux correlation because we

would expect it to be higher and because much of the satellite-tracked float data were collected in the sum-

mertime. This suggests that themodeled correlation scales of heat and salinity flux in theWeddell Sea region

of SOSE may be inaccurate and should be treated with some skepticism.

4.2.3. Salinity and Temperature Error as a Function of Position Loss Time

Wehaveestimatedpositionuncertainty in latitude-longitudeas a functionof time (section3) and temperature

and salinity uncertainty as a function of latitude-longitude distance (section 4). In this section, we combine

these two calculations to estimate representation error as a function of position loss. These uncertainty esti-
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Figure 15. (a) Salinity and (b) temperature errors in the Weddell Sea as a function of depth and time of position loss.

Solid green curve represents standard deviation (STD) of temperature and salinity of all satellite-tracked float profiles.

Shaded region on either side of the green curve is the sensor error. Dashed lines are measurement uncertainty for

various durations of position loss. Cyan curve is average of SOSE model uncertainty in the study area. Black lines

represent sensor uncertainty: 0.002 psu and 0.002 ∘C. SOSE = Southern Ocean State Estimate.

mates are useful for synthesizing Lagrangian data of unknown position into gridded Eulerian products and

are calculated for the first time.

Maximum total error in temperature and salinity, as a function of depth for a location to which an under-ice

float profile has been assigned through interpolation, is estimated as follows: given a specified TIPT,maximum

positionuncertainty is estimatedusingFigure 7 (section3). The temperature and salinity error profiles are then

taken from the temperature and salinity error maps (Figures 9d and 10d). For example, the column between

70 and 105 km would be used for a position uncertainty of 90 km.

The maximum total temperature and salinity error due to linear interpolation of positions for 120, 180, and

240 days of position loss as well as the standard deviation of the Weddell Gyre Argo float temperature and

salinity data are shown in Figure 15. For the upper ocean (shallower than 300 m), maximum error can equal

0.66 ∘C or 94.5% of the total variance in the temperature field and 0.15 psu or 91.4% of the variance in salinity.

Gridded products that do not account for this linear interpolation error in position measurement will project

this uncertainty onto model error. The prescribed model error for SOSE (Mazloff et al., 2010) averaged over

our study area is also shown in Figure 15. In theWeddell Gyre, SOSE uses amaximummodel error of 0.24 ∘C in

temperature and 0.067 psu in salinity. Comparing prescribedmodel error with maximum linear interpolation

uncertainties, we find that linear interpolation uncertainty is 276% of SOSE model error in temperature and

229% in salinity. These representation errors are not only significant in the upper ocean. For the deeper parts

of Argo float profiles (300–2,000 m), we find that uncertainty due to linear interpolation can be as high as

0.16 ∘C, or 55.9% of the total variance in the temperature field, and 0.01 psu, or 91.1% of the signal in salinity.

In the broader sense, this highlights the importance of this type of accounting for use in all applications. If

higher uncertainty due to interpolatedpositions is not combinedwithmeasurement uncertainty, anyproduct

generated is likely to overfit the data. The Southern Ocean contributes to the long-term oceanic heat gain.

Desbruyères et al. (2016) foundawarming trend in thedeepoceanbelow2,000mof 2.17±0.70× 10−3 ∘C/year
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averaged from 1991 to 2010. At 2,000 m, we estimate a temperature uncertainty of 8.49 × 10−2 ∘C, which

represents 39.1 years of warming at the Desbruyères et al., 2016 rate. This comparison might be misleading

becauseof thedifferentdepth ranges, given that thewarming trendhasbeenminimal in theSouthernOcean’s

Deep Water layer between the thermocline and abyssal water (Purkey & Johnson, 2010). Nevertheless, the

reader is cautioned that as autonomous technologies advance and the Argo array heads into the abyss with

the deployment of Deep Argo, linear interpolation uncertainty, if inappropriately accounted for, could mask

subtle residual signals.

A noteworthy point is that the insonification of the Weddell Gyre and use of RAFOS-enabled profiling floats

eliminates linear interpolation error for the temperature and salinity profiles when RAFOS tracking is possible.

In our study, RAFOS-enabled floats received satellite positioning on 4% of days and were acoustically tracked

on 56% of days. As noted in Klatt et al., 2007, sound transmission in the Weddell Sea is more efficient during

ice-free conditions, and consequently, floats were acoustically tracked on 52% of days while under the ice

and 61% of days while out of ice. A denser network of sound sources or improvements in under-ice sound

transmission or detection could improve this tracking rate. Any long-term study of under ice processes should

consider acoustic tracking to reduce representation error due to linear interpolation.

5. Conclusions

Position uncertainty and spatial correlation scales for temperature and salinity were combined to produce

error estimates as a function of time-of-position-loss for a set of Argo floats deployed in the Weddell Gyre.

Position uncertainty was calculated by linearly interpolating float track data, in latitude-longitude and PV

coordinates, at intervals from 1 to 8 months. Float positions were derived from satellite-tracked Argo floats,

RAFOS-enabled Argo floats (when available), and a SOSE particle release simulation. The position uncertainty

estimated from the RAFOS-enabled float tracks for 8 months of ice cover was 116 ± 148 km. The estimates

derived from satellite-tracked and RAFOS-enabled data sets were in good agreement, although there were

only enough satellite-tracked data during ice-free periods to make estimates for 4 months of position loss.

PV interpolation reduced position uncertainty for all data sets. We interpreted the quadratic structure of the

position loss as a function of time using a Brownian Bridge, which assumes that the deviation from the lin-

early interpolated track is due to randommotion resulting from themesoscale eddy field. Maximum position

uncertainty was similar during summer and winter which suggests that the parametrized diffusivity (�2) is

temporally invariant.

The agreement betweenpositionuncertainties estimated fromsatellite-trackedfloats (during ice-free periods

of continuous 10-day sampling) and RAFOS-tracked floats, as well as the similarities of winter and summer

position uncertainty statistics, suggests that satellite-tracked profiling floats can be used to estimate position

uncertainties in other parts of the seasonally ice-covered Southern Ocean that have no RAFOS tracking. In

contrast, particle tracking in the 0.16∘ SOSE iteration yielded position uncertainties that were approximately

75% of the observation-basedmethod, possibly because SOSE at this spatial resolution underestimates eddy

energy. Therefore, we cannot recommend using the 0.16∘ SOSE to estimate these statistics throughout the

Southern Ocean.

Within the range of 1- to 8-month position uncertainty, maximum error in salinity and temperature above

300mwas 0.15 psu and 0.66 ∘C, respectively; maximumuncertainty in temperature and salinity between 300

and2,000mwas0.01psu and0.16 ∘C, respectively. Spatial correlationwas longer along isopycnal surfaces and

in themixed layer. Error due to linear interpolation of float positions increased as a function of time of position

loss and was up to 81.9% of the variance in Weddell Gyre float temperature measurements and 96.5% of the

variance in Weddell Gyre float salinity measurements for 8 months of position loss. Temperature and salinity

uncertainties are important inputs to state estimates, which are constrained by observations. We recommend

that temperature and salinity uncertainties in state estimates be increased abovemeasurement error for Argo

floats that are under the ice.

We also found maximum heat flux, salinity flux, and buoyancy flux errors to be 28.5 W/m2, 1.8 × 10−3kg ⋅

m−2
⋅ s−1, and 212.4 W/m2, respectively. Heat flux errors had little seasonal variability. Salinity, freshwater, and

buoyancy flux correlation valueswere approximately 0.2 greater during austral summer than in austral winter.

Spatial correlation scales in temperature and salinity were calculated along both depth and density surfaces

and presented as a function of total distance.
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If an observing system aims to resolve spatial variations in upper ocean temperature and salinity, acoustic

tracking is recommended. The RAFOS float tracking used for theWeddell Gyre floats herewas carried outwith

a new approach that we developed in the course of this study, using a Kalman smoother, to be described in

a subsequent publication. This approach reduces the tracking error. These errors are not treated here; rather,

the tracking is treated as if it is exact.

As the volume of biogeochemical data increases, our uncertainty analysis can be repeated for variables other

than temperature and salinity. For a biogeochemical tracer, such as alkalinity, which is likely to have distribu-

tions that are similar to salinity (Lee et al., 2006), we would expect correlation scales to be similar to those

for salinity. Biogeochemical tracers that are closely linked to surface ventilation and seasonal blooms will

likely have correlation scales and uncertainties that differ from temperature and salinity and will need to be

calculated from in situ data sets, which are as yet inadequate.
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Cerovečki, I., Talley, L. D., Mazloff, M. R., & Maze, G. (2013). Subantarctic Mode Water formation, destruction, and export in the

eddy-permitting Southern Ocean State Estimate. Journal of Physical Oceanography, 43(7), 1485–1511.
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